Skip to content

Comparison of M-PSK, M-QAM, and M-PAM Modulation Schemes


1. Key Parameter Relationships

  • Bits per symbol:\( k = \log_2 M \)
  • Symbol/bit energy:\( E_s = k E_b \)
  • SNR per bit:\( \gamma_b = E_b / N_0 \)
  • SNR per symbol:\( \gamma_s = E_s / N_0 = k \gamma_b \)
  • Spectral efficiency:\( \eta = k \) bits/s/Hz

2. General BER Equations (AWGN, Gray Coding)

Modulation BER (in \(E_b/N_0\))
M-PSK \( \frac{2}{k} Q\left(\sqrt{2k\gamma_b}\sin\frac{\pi}{M}\right) \)
M-QAM \( \frac{4}{k}\left(1-\frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3k\gamma_b}{M-1}}\right) \)
M-PAM \( \frac{2(M-1)}{Mk} Q\left(\sqrt{\frac{6k\gamma_b}{M^2-1}}\right) \)
  • \(Q(x)\): Q-function.
  • \(k = \log_2 M\), \(\gamma_b = E_b / N_0\).

3. Side-by-Side Numerical Comparison: QAM vs PSK

M \(k\) \(E_s/E_b\) Spectral Efficiency M-QAM (BER in \(E_b/N_0\)) M-PSK (BER in \(E_b/N_0\))
2 1 1 1 — (not used) \( Q\left(\sqrt{2\gamma_b}\right) \)
4 2 2 2 \( Q\left(\sqrt{4\gamma_b}\right) \) \( Q\left(\sqrt{4\gamma_b}\right) \)
16 4 4 4 \( \frac{3}{4} Q\left(\sqrt{12\gamma_b/15}\right) \) \( \frac{1}{2} Q\left(\sqrt{8\gamma_b}\sin\frac{\pi}{16}\right) \)

Notes

  • For \(M=2,4\): QAM and PSK have identical BER and SNR terms.
  • For \(M=16\): QAM is more power-efficient than PSK at the same spectral efficiency.
  • As \(M\) increases, PSK becomes less efficient than QAM (needs more SNR for same BER).

4. Additional Parameter Reference (M-PAM)

M \(k\) \(E_s/E_b\) BER (in \(E_b/N_0\))
4 2 2 \( \frac{3}{4} Q\left(\sqrt{12\gamma_b/15}\right) \)
16 4 4 \( \frac{15}{64} Q\left(\sqrt{24\gamma_b/255}\right) \)

5. Summary

  • Spectral Efficiency: Identical for given \(M\).
  • Power Efficiency: QAM \(>\) PSK \(>\) PAM (for same \(M\)).
  • Equation form: Always use the relationships \( E_s = k E_b \) and \( \gamma_s = k \gamma_b \) for conversions.

For more detail on derivations and constellation effects, see textbooks like Proakis, Goldsmith, or Haykin.


_Last updated: June 06, 2025